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One of the most striking achievements of evolution is the ability to build cellular
systems that are both robust and dynamic. Taken by themselves, both properties
are obvious requirements: robustness reflects the fact that cells are there to
survive, and dynamics is required to adapt to changing environments. However, it
is by no means trivial to understand how these two requirements can be
implemented simultaneously in a physical system. The long and difficult quest to
build adaptive materials is testimony to the inherent difficulty of this goal. Here
materials science can learn a lot from nature, because cellular systems show that
robustness and dynamics can be achieved in a synergetic fashion. For example,
the capabilities of tissues to repair and regenerate are still unsurpassed in the
world of synthetic materials.

One of the most important aspects of the way biological cells adapt to their
environment is their adhesive interaction with the substrate. Numerous aspects of
the physiology of metazoan cells, including survival, proliferation, differentiation
and migration, require the formation of adhesions to the cell substrate, typically
an extracellular matrix protein. Adhesions guide these diverse processes both by
mediating force transmission from the cell to the substrate and by controlling
biochemical signaling pathways. While the study of cell–substrate adhesions is a
mature field in cell biology, a quantitative biophysical understanding of how the
interactions of the individual molecular components give rise to the rich dynamics
and mechanical behaviors observed for cell–substrate adhesions has started to
emerge only over the last decade or so.

The recent growth of research activities on cell–substrate interactions was
strongly driven by the introduction of new physical techniques for surface
engineering into traditional cell biological work with cell culture. For example,
microcontact printing of adhesive patterns was used to show that cell fate depends
not on the amount of ligand for adhesion receptors, but on its spatial distribution
[1]. New protocols for the preparation of soft elastic substrates were essential to
show that adhesion structures and cytoskeleton of adherent cells strongly adapt to
substrate stiffness [2], with dramatic effects for cellular decision making. For
example, it has been shown recently that differentiation of mesenchymal stem
cells is strongly influenced by substrate stiffness [3]. Thus, physical factors
appear to be equally important as biochemical ones in determining the cellular
response to its substrate [4].

The introduction of novel physical techniques not only opened up completely
new perspectives regarding biological function, it also introduced a new
quantitative element into this field. For example, the availability of soft elastic
substrates with controlled stiffness allows us to reconstruct cellular traction forces
and to correlate them with other cellular features. This development enables
modeling approaches to work in close contact with experimental data, thus
opening up the perspective that the field of cell–substrate interactions will become
a quantitative and predictive science in the future.

Because physical research into cell–substrate interactions has become one of
the fastest growing research areas in cellular biophysics and materials science, we
believe that it is very timely that this special issue gathers some of the on-going
research effort in this field. In contrast to the non-living world, cellular systems
usually interact with their environment through specific adhesion, mainly based
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on adhesion receptors from the integrin family. During recent years, force
spectroscopy has emerged as one of the main methods to study the physics of
specific adhesion. In this special issue, single cell force spectroscopy is used by
Boettiger and Wehrle-Haller to characterize the strength of cell-matrix adhesion
and how it is modulated by the glycocalyx [5], while Chirasatitsin and Engler use
force spectroscopy mapping to characterize the spatial distribution of adhesive
sites on the substrate [6]. Scrimgeour et al describe a new method to adhesively
pattern self-assembled monolayers for cell adhesion by a simple photobleaching
setup [7] and Stricker et al demonstrate how elastic substrates can be combined
with microcontact printing to improve the reconstruction of traction forces [8].
The work by Metzner et al shows that meaningful results on the cell–substrate
interactions can be extracted also from experiments in which cells interact with
biofunctionalized beads [9].

If cells start to adhere to a substrate, the main rate-limiting step is
establishment of close contact between the plasma membrane and the substrate.
This process can be followed with high spatial and temporal resolution with
reflection interference microscopy, as demonstrated by Ryzhkov et al for mouse
embryonic fibroblasts [10] and by Cretel et al for T lymphocytes [11]. Once
mature adhesion has been achieved, the integrin-based focal adhesions providing
anchorage to the substrate are strongly connected to the actin cytoskeleton, the
main determinant of cell shape and structure. Heil and Spatz use microfabricated
pillars to perturb the mechanical balance and quantitatively characterize the fast
response of the focal adhesions [12]. A similar approach is used by
Kirchenbüchler et al, who use deformation of an elastic substrate to demonstrate
that the weak link in the mechanical system of substrate, adhesions and actin
cytoskeleton is most likely located at the adhesion-cytoskeleton interface [13].
Rather than using external perturbations, Zemel et al quantify and model how
cells spontaneously polarize their cytoskeleton in response to the physical
properties of the substrate [14].

Quantitative analysis of cellular data has become standard in the field of
cell–substrate interactions. Moreover, theoretical models for cell–substrate
interactions help us to identify and understand the mechanisms underlying the
observed phenomena in these complex systems. Recently, a large effort has been
invested into understanding how force transmitted by the actin cytoskeleton
changes the state of focal adhesions. In the contribution by Biton and Safran, this
issue is addressed for the case that force arises from shear flow over an adhering
cell [15]. Another important source for force on focal adhesions is actin
retrograde flow, which has been demonstrated before to show variable coupling to
the underlying layer of adhesion receptors. Two contributions discuss how
stochastic bond dynamics at the cell–substrate interface is modulated by physical
factors. The model by Sabass and Schwarz suggests that dissipation in the actin
cytoskeleton stabilizes bond dynamics [16] and the model by Li et al suggests that
catch bonding and multiple layers are important elements of the way focal
adhesions function [17].

If interacting with an elastic environment, the combined system of focal
adhesions and actin cytoskeleton can be used by cells to sense its rigidity and to
make decisions on its response. Moshayedi et al show that great care has to be
taken when preparing soft elastic substrates for cell culture studies and then use
their protocols to quantitatively evaluate the mechanosensitive response of
astrocytes from the brain [18]. The cellular system used by Lee et al is pericytes
from the microvasculature, for which the authors show that they exert sufficient
forces to stimulate vascular endothelial cells [19]. Buxboim et al use the
technology of soft elastic substrates to measure how far mesenchymal stem cells
can mechanically sense into their substrate [20].
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The mechanical activity of cells observed in two-dimensional cell culture has
significant consequences for both physiological and disease-related situations,
including cell migration, tissue maintenance and tumor growth. Jannat et al show
that chemotaxis of neutrophils, that is the first line of the immune system, is
strongly modulated by mechanosensing on substrates of varying stiffness [21].
Mogilner and Rubinstein present a theoretical systems analysis for the shape of
rapidly migrating keratocytes [22]. Saez et al show, with microfabricated pillar
assays, how force is distributed within a layer of epithelial cells [23]. For
three-dimensional tissue models, new techniques have to be developed to
characterize the complex mechanics of hydrogels. Levental et al [24] and
Kotlarchyk et al [25] approach this challenge with mechanical and optical
methods, respectively. Narayanan et al combine experiments and continuum
models to explore how chemo-mechanical interactions influence tumor growth
[26].
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Adhesion patterns in early cell spreading J. Phys.: Condens. Matter 22 194106

[11] Cretel E, Touchard D, Benoliel A M, Bongrand P and Pierres A 2010 Early contacts between
T lymphocytes and activating surfaces J. Phys.: Condens. Matter 22 194107

[12] Heil P and Spatz J P 2010 Lateral shear forces applied to cells with single elastic micropillars
to influence focal adhesion dynamics J. Phys.: Condens. Matter 22 194108
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